Home
|
Sign In
|
Join Now
|
Welcome Guest
   

A Business catalogs of plastic manufacturers, plastic exporters, plastic suppliers, plastic products suppliers, manufacturers and exporters

    Premium Listing  |    E-Plastic Shop  |    Plastic Trade   |    E-Plastic Newsletter  

Products Directory  |   Join With Us  |   Business Solutions  |  Advertise With Us  |   Plastic Classifieds  |   Plastic Price  |   Ask Experts  |  Plastic Events

Add Your Company :  Recommend Our Site :  Discussion Forum  :  Plastic Jobs :  Plastic News  :  FAQ :  Plastic Engineering : IPD Network Member

Search :    By CompanyBy Product     
  Plastics Engineering

Injection Molding

Injection molding is the principal method of forming thermoplastic materials. Modifications of the injection process are sometimes used for thermosetting plastics.

In injection molding, plastic material is put into a hopper which feeds into a heated injection unit. A reciprocating screw pushes the plastic through this long heating chamber, where the material is softened to a fluid state. At the end of this chamber there is a nozzle which abuts firmly against an opening into a cool, closed mold. The fluid plastic is forced at high pressure through this nozzle into the cold mold. A system of clamps hold the mold halves shut. As soon as the plastic cools to a solid state, the mold opens and the finished plastic is ejected from the press.

The problem with injection molding of thermosetting materials is that, under heat, these plastics will first soften, then harden to an infusible state. Thus it is essential that no softened thermosetting material in the heating chamber be allowed to remain there long enough to set. Jet molding, offset molding and molding using a screw-type machine overcome this problem by liquefying the thermosetting plastic material just as it goes through the injection nozzle into the mold, but not before.

Blow Molding

Blow molding is a method of forming hollow articles out of thermoplastic materials.

Blow molding is a process of forming a molten tube of thermoplastic material, then with the use of compressed air, blowing up the tube to conform to the interior of a chilled blow mold. The most common methods are extrusion, injection, and injection-stretch blow molding.

The continuous-extrusion method uses a continuously running extruder with a tuned die head that forms the molten plastic tube. The tube is then pinched between two mold halves. A blow pin or needle is inserted into the tube and compressed air is used to blow up the part to conform to the chilled mold interior. Accumulator-extrusion is similar, however, the molten plastic material is accumulated in a chamber prior to being forced through a die to form the tube.

Injection blow molding is a process of injection molding a preform (similar to a test tube), then taking the tempered preform to a blow mold to be filled with compressed air to conform to the interior of the blow mold. Injection-stretch blow molding can be a single-stage process similar to standard injection blow molding, by adding the element of stretch prior to blow forming. Also, a two-step process is possible, where a preform is made in an injection molding machine, then taken to a reheat-stretch blow molding machine for preform reheating and final blow forming in a blow mold.

Thermoforming

Thermoforming of plastic sheet has developed rapidly in recent years. This process consists of heating thermoplastic sheet to a formable plastic state and then applying air and/or mechanical assists to shape it to the contours of a mold.

Air pressure may range from almost zero to several hundred psi. Up to approximately 14 psi (atmospheric pressure), the pressure is obtained by evacuating the space between the sheet and the mold in order to utilize this atmospheric pressure. This range, known as vacuum forming, will give satisfactory reproduction of the mold configuration in the majority of forming applications.

Transfer Molding

Transfer molding is most generally used for thermosetting plastics. This method is like compression molding in that the plastic is cured into an infusible state in a mold under heat and pressure. It differs from compression molding in that the plastic is heated to a point of plasticity before it reaches the mold and is forced into a closed mold by means of a hydraulically operated plunger.

Transfer molding was developed to facilitate the molding of intricate products with small deep holes or numerous metal inserts. The dry mold compound used in compression molding sometimes disturbs the position of the metal inserts and the pins which form the holes. The liquefied plastic material in transfer molding flows around these metal parts without causing them to shift position.

Reaction Injection Molding

Reaction injection molding (RIM) is a relatively new processing technique that has rapidly taken its place alongside more traditional methods. Unlike liquid casting, the two liquid components, polyols and isocyanates, are mixed in a chamber at relatively low temperatures (75 - 140 F) before being injected into a closed mold. An exothermic reaction occurs, and consequently RIM requires far less energy usage than any other injection molding system.

The three major types of polyurethane RIM systems are rigid structural foam, low-modulus elastomers, and high-modulus elastomers.

Reinforced RIM (R-RIM) consists of the addition of such materials as chopped or milled glass fiber to the polyurethane to enhance stiffness and to increase modulus, thus expanding the range of applications.

Compression Molding

Compression molding is the most common method of forming thermosetting materials. It is not generally used for thermoplastics.

Compression molding is simply the squeezing of a material into a desired shape by application of heat and pressure to the material in a mold.

Plastic molding powder, mixed with such materials or fillers as woodflour and cellulose to strengthen or give other added qualities to the finished product, is put directly into the open mold cavity. The mold is then closed, pressing down on the plastic and causing it to flow throughout the mold. It is while the heated mold is closed that the thermosetting material undergoes a chemical change which permanently hardens it into the shape of the mold. The three compression molding factors -- pressure, temperature and time the mold is closed -- vary with the design of the finished article and the material being molded.

Extrusion

Extrusion molding is the method employed to form thermoplastic materials into continuous sheeting, film, tubes, rods, profile shapes, and filaments, and to coat wire, cable and cord.

In extrusion, dry plastic material is first loaded into a hopper, then fed into a long heating chamber through which it is moved by the action of a continuously revolving screw. At the end of the heating chamber the molten plastic is forced out through a small opening or die with the shape desired in the finished product. As the plastic extrusion comes from the die, it is fed onto a conveyor belt where it is cooled, most frequently by blowers or by immersion in water.

In the case of wire and cable coating, the thermoplastic is extruded around a continuing length of wire or cable which, like the plastic, passes through the extruder die. The coated wire is wound on drums after cooling.

In the production of wide film or sheeting, the plastic is extruded in the form of a tube. This tube may be split as it comes from the die and then stretched and thinned to the dimensions desired in the finished film.

In a different process, the extruded tubing is inflated as it comes from the die, the degree of inflation of the tubing regulating the thickness of the final film.

Basic Processing Method of Plastic

Molding
Compression Molding
Transfer Molding
Injection Molding
Gas Assisted Injection Molding (GAIN)
Reaction Injection Molding (RIM/SRIM)
Injection/Compression Molding
Blow Molding
Extrusion Blow Molding
Injection Blow Molding
Injection Stretch Blow Molding
Rotational Molding

Extrusion

Rod, Pipe, Sheet, Profile Extrusion
Coextrusion
Extruded/Blown Film
Extruded Foam
Pultrusion

Casting

Cast Film
Cast Shape
Vacuum Casting
Lay-Up

Forming

Vacuforming
Thermoforming
Pressure Forming

Calendering

Coating

Powder Coating
Dispersion Coating
Extrusion Coating and Laminating
Spray Coating
Dip Coating

Spinning

Fiber Spinning
Melt Blown Nonwoven Fiber
 

 

  Become our Premium Member
and
Get a Free Biz Page








  Knowledge Base
   Business Report on Plastic
   Unique Plastic Links
   International Plastic Events
   News
   Research Based Plastics Links
   Plastic Research Institutes
   Plastic Testing Institutes
   Plastic Journals
   Plastic Acronyms
   Plastic Glossary



  Plastic Engineering
   Plastic Facts
   Plastic Processing Chemicals
   Plastic Product Manufacturing...
   Plastic Processing
   Plastic Machineries
   Plastic Properties
   Plastic Testing Methods
   Plastic Recycling
   Biodegradable Plastic
   History of Vinyl



  Plastic People
   Plastic Impex
   Distributors / Supplier
   Plastic Machinery Manufacturers
   Raw plastic Manufacturers
   World Plastic manufacturers
   Plastic / Polymer Consultants
   Plastic Associations



  Plastic Articles
   Technical Papers
   Press Releases
   Plastic Articles
   Plastic Statistics
   Publications Plastic













    Knowledge Base
    Plastic Engineering
    Plastic People
    Plastic Articles

||   About Us  ||   Vision   ||   Feedback   ||   Contact Us   ||   Recommend this Site   ||   Send Comments    ||   FAQ    ||   Disclaimer    ||   Privacy Policy    ||